
FragPred Fragmentation Prediction Code

Numerical method for prediction: •Number, mass, velocity and space distribution of naturally fragmented weapon fragments, •Arena and Pit results

Warheads which Can Be Considered by the Program

Method

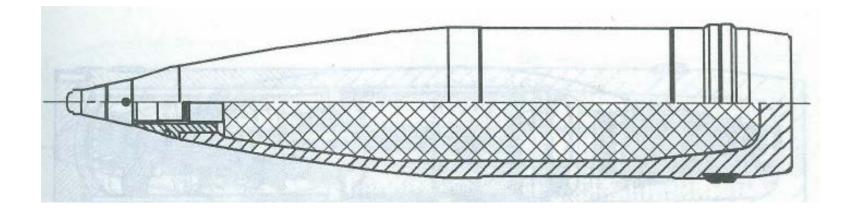
- A two dimension space, time dependent, fluid dynamic computer code.
- Metal casing is treated as sets of mass points of which motion is found along with the gas flow.
- The gas dynamics following detonation of the explosive is Lagrangian, with provision for slippage along the metal boundary.
- A conventional Lagrangian scheme with artificial viscosity is used for the interior gas dynamics.
- Gas grid points are made to slide along the metal boundary.
- The program, written in FORTRAN 90, is simple and quick to run.

Capability

- Calculation of number of fragments produced by the detonation of the high explosive (HE) warhead.
- Calculation of distributions, of fragment's mass, linear and angular velocity in the polar zones surrounding the projectile.
- Prediction of parameters of the effective lethal area of naturally fragmenting warheads.
- Program has a clear GUI for entering and manipulating with data, and for controlling the execution.
- The results of calculation are printed in files and plotted on graphs.

Purpose

- Simple, fast and reliable, prediction of lethal area parameters.
- Preliminary warhead design.
- Analysis of the influence of various design parameters on the warhead efficiency:
 - warhead caliber and length,
 - explosive charge characteristics,
 - casing thickness,
 - target characteristics, etc.
- Simulation of Arena and Pit tests and thus avoids the need for expensive model fabrication or the tedious collection of fragments from.


Limitations

The current version of the Program requires some empirically determined constants:

- The values of JWL Equation of state of product of detonation. In current version the constants are determined upon the fitting the results of Cylinder test, and they are stored in the Program as optional values.
- Casing material is defined only by density.
- Detonation always starts on the warhead "nose side".
- Application on naturally fragmented warheads only, but the Program can be extended to account for premade fragmented warheads.
- Number of discretization zones in longitudinal direction is limited to 24.

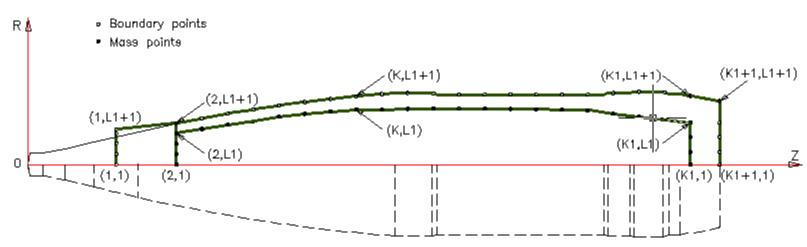
Comparison with Experiments

Example: Artillery projectile 122 mm M76

Next diagrams show comparison of the FragPred calculation with results of experiments for the arena radius 10.5, 14.0, 17.5 and 21 m

Main menu

Projectile Fragmentation Simulation

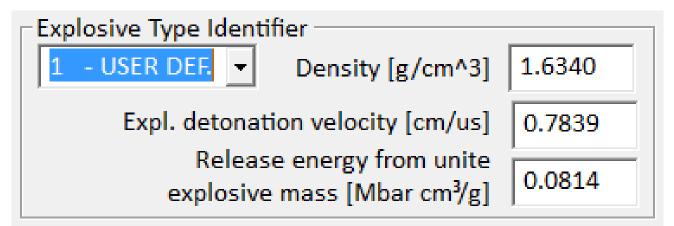

Inpu	ıt data fil	le H:\	,0000000) MY SO	FTWARE	SOFTW/	ARE FRAG	G_PREDI	CT\New	fragmen	ntation\Fr	ragSimExe			About Program
Pr	oject titl	title ROUND 122mm											Clear All Data	In	put Data Description
Proje	ct subtitl	le Tes	st examp	le							Open Input File			Output Files Description	
Const	arting ca ant of ma of calcul se mater Velocit	alculation aximum lation tir ial densi	increasir ne step	rs] 0.3 ng [-] 1.1 n ³] 4.00			1[-]	ensity [g, pread-up	/cm ³] time Constan D2 D3	2 [-] (3 [-] 4	0.3000 4.9055 0.0580		Iosive Type Identifier - USER DEF. Der Expl. detonation ve Release ene explosive mass Execution ACCEPT DATA RUN	locity rgy fr	rom unite
	oordinat			1 24									File Manager		Output
Numbe	r of zone 1	es along 2	Z-axis [- 3	4 <u> </u>	5	6	7	8	9	10	11	12	Save Input File]	Energy
Z(K,1)	-5.000	0.000	2.217	4.435	6.652	8.870	11.087	13.305	15.522	17.740	19.957	22.175	Save Input File As		Velocity
R(K,4)	3.000	2.600	3.005	3.410	3.750	4.090	4.355	4.620	4.710	4.800	4.800	4.800	Open/View File		Penetration
R(K,5)	3.020	3.620	3.995	4.370	4.685	5.000	5.260	5.520	5.725	5.930	6.015	6.100	Charts Projectile Grid		Distribution
к	13	14	15	16	17	18	19	20	21	22	23	24	Mass C Energy		Efficiency
Z(K,1)	24.392	26.610	28.827	1.045	32.000	33.262	35.480	37.697	39.915	42.130	44.350	46.850	Velocity		Hitting Probability
R(K,4)	4.780	4.760	4.745	4.730	4.700	4.680	4.630	4.370	4.110	3.860	3.400	3.400	 Fragments Analysi Hitting Probability 		
R(K,5)	6.075	6.050	6.050	6.050	6.050	6.050	6.050	6.075	6.100	6.050	6.030	5.920			
													Draw		EXIT

×

Input data: Grid Coordinates

	oordinat			1 24								
Numbe	er of zone	es along	•	I I								
K						6		8		10		12
Z	-5.000	0.000	2.217	4.435	6.652	8.870	11.087	13.305	15.522	17.740	19.957	22.175
Ri	3.000	2.600	3.005	3.410	3.750	4.090	4.355	4.620	4.710	4.800	4.800	4.800
Ro	3.020	3.620	3.995	4.370	4.685	5.000	5.260	5.520	5.725	5.930	6.015	6.100
к	13	14	15	16	17	18	19	20	21	22	23	24
Z	24.392	26.610	28.827	31.045	32.000	33.262	35.480	37.697	39.915	42.130	44.350	46.850
Ri	4.780	4.760	4.745	4.730	4.700	4.680	4.630	4.370	4.110	3.860	3.400	3.400
Ro	6.075	6.050	6.050	6.050	6.050	6.050	6.050	6.075	6.100	6.050	6.030	5.920

Sketch of projectile grid oordinates



Radius [cm]

Charts **The Starting Grid Lines** Projectile Grid □ Mass Energy Sketch of starting grid lines produced by program Velocity □ Fragments Analysis □ Hitting Probability ROUND 122mm SKETCH INPUT DATA Draw 06. 03. 2015. 7.0 Outer casing 6.0 Inner casing ····· Explosive1 5.0 ----- Explosive2 4.0 3.0 2.0 1.0 0.0 -10 0 10 20 30 40 50 Z [cm]

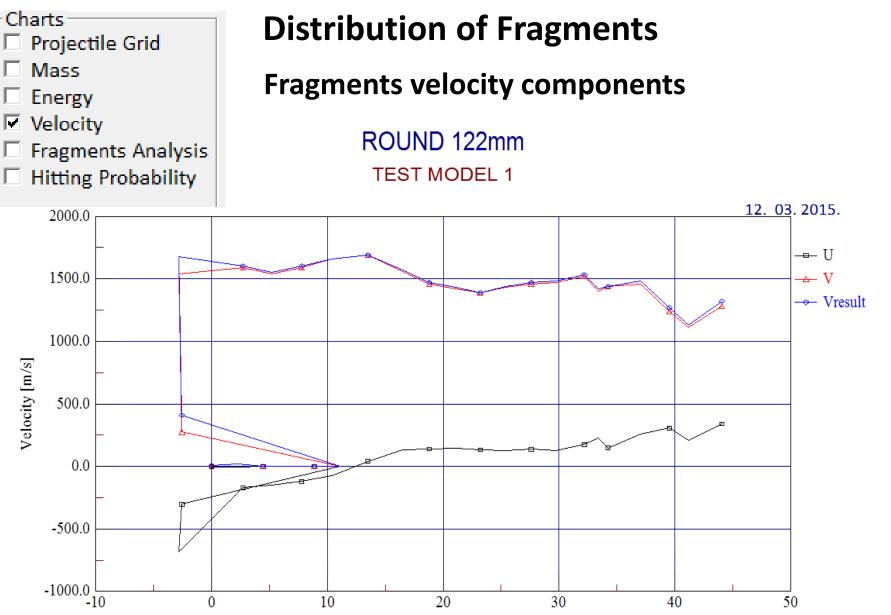
10

Explosive Parameters Input

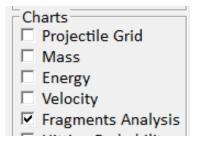
Six predefined explosive plus one user defined

NEXPL	EXPLOSIVE	DENSITY	DETONAT. RATE	RELEASING ENERGY
#		r (g/cm ³⁾	D (cm/ms)	E1 (Mbar cm ³ /cm ³)
1	USER DEF.	1.634	0.7839	0.0814
2	TNT	1.54	0.67	0.0703
3	COMP B	1.634	0.7839	0.0814
4	HEXOGEN - RDX	1.76	0.875	0.0994
5	OCTOL (70 30)	1.8	0.8377	0.0837
6	OCTOL (75 25)	1.81	0.8643	0.0867
7	OCTOGEN - HMX	1.9	0.91	0.1177

Results

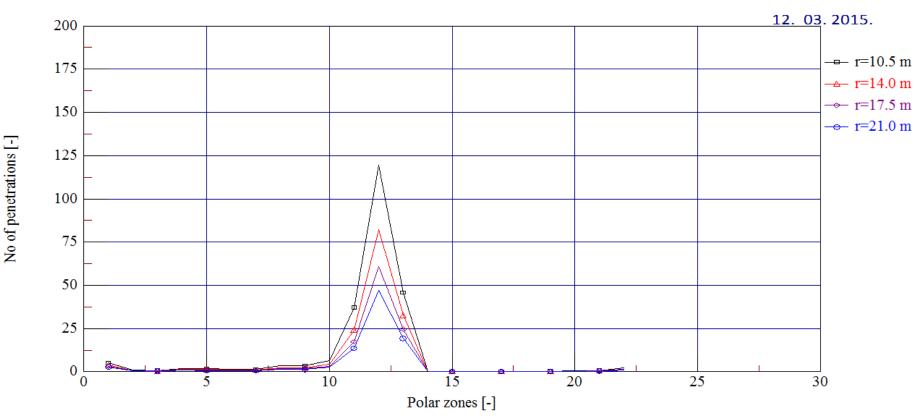

- □ Sketch (drawing) of projectile
- Files and diagrams with calculated jet parameters
- Files and diagrams with calculated fragmentation parameters

Output Files


Results					
Projectile Grid					
Mass					
Output					
Energy					
Velocity					
Penetration					
Distribution					
Efficiency					
Hitting Probability					

Output Files – Cont.

FILE NAME	DESCRIPTION
Output.txt	Input data and various calculated quantities
Grid.txt	Coordinates of grid points
Mass.txt	Casing and explosive cell and total mass. Mass ratio and crushing casing parameter
Energy.txt	Kinetic and internal energy of product of detonation, kinetic energy of metal casing and total energy on calculacion cycle N
Velocity.txt	Coordinates and velocity components of grid points
Penetration.txt	Number of penetrations through arena panels placed around warhead
Distribution.txt	Fragments distribution according to the mass group and the number in the polar zones
Efficiency.txt	The efficiency coefficient A _E [m ²] for Alpha=30, 45, 60 degrees
Hitting prob.txt	Hitting probability of the recumbent or standing man target
Final.txt	Coordinates and velocity components of grid points and cell mass


Z [cm]

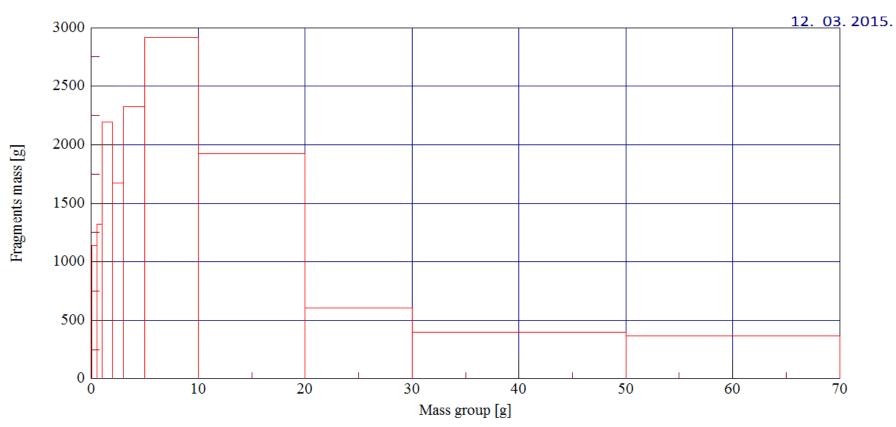
Distribution of Fragments

Number of fragments in polar zones

ROUND 122mm TEST EXAMPLE 1

Projectile Grid

Distribution of Fragments


🗆 Mass

Charts

- Energy
- Velocity
- Fragments Analysis
- Hitting Probability

Distribution of fragments mass in mass groups

ROUND 122mm TEST EXAMPLE 1

0

0

10

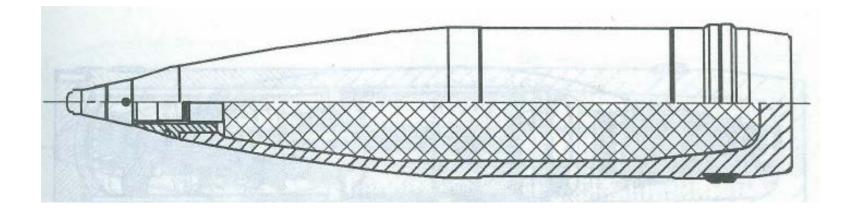
20

Distribution of Fragments Charts Projectile Grid Mass **Distribution of number of fragments in mass groups** Energy Velocity ✓ Fragments Analysis ROUND 122mm Hitting Probability **TEST EXAMPLE 1** 12. 03. 2015. 6000 5000 Number of fragments [-] 4000 3000 2000 1000

30

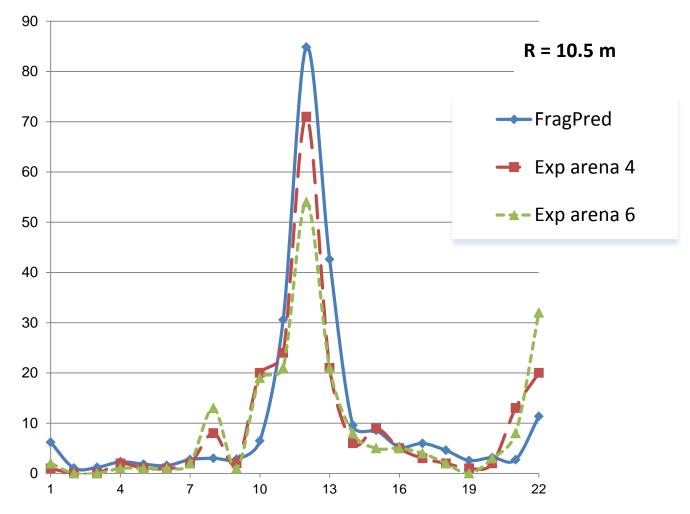
Mass group [g]

40

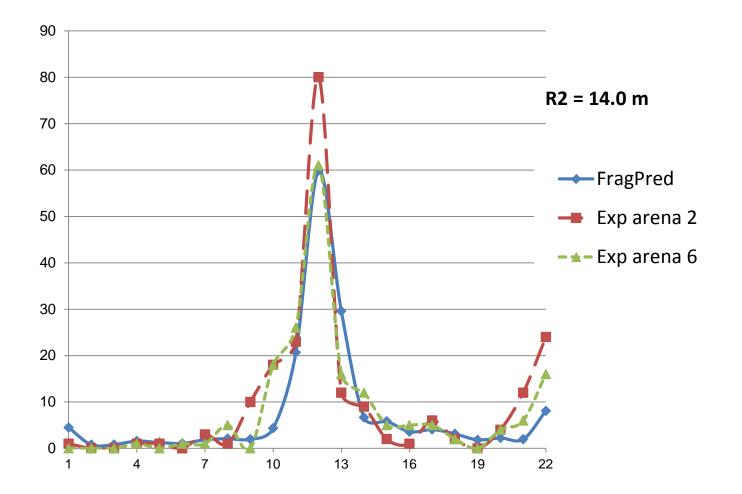

50

60

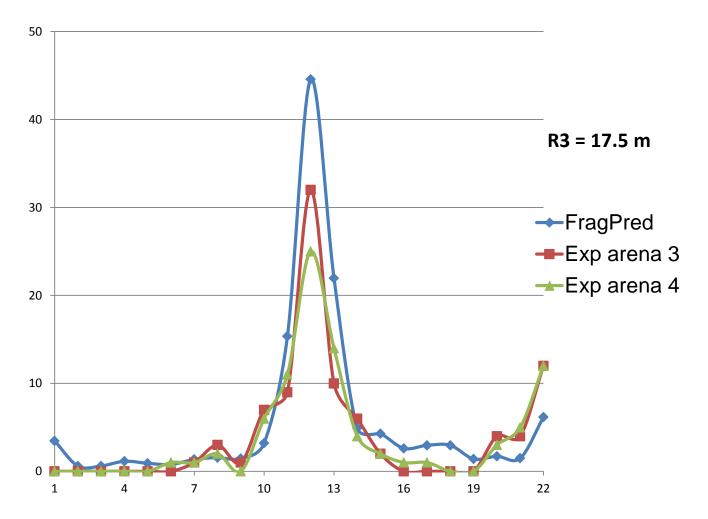
70

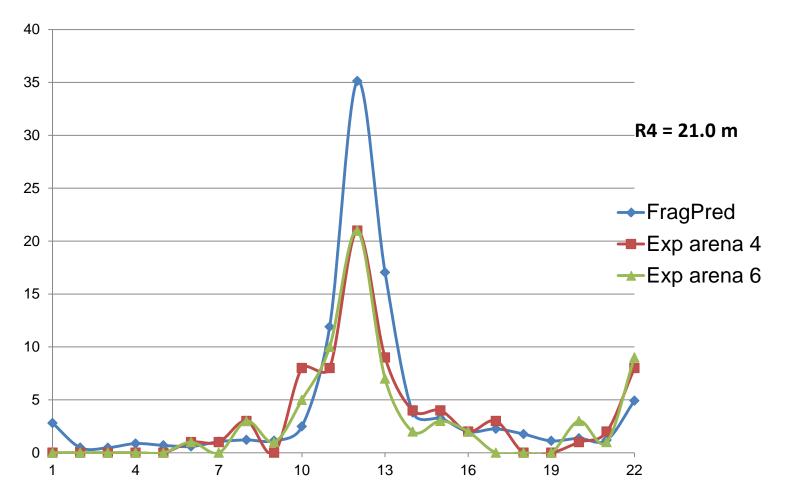

Comparison with Experiments

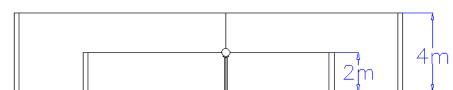
Example: Artillery projectile 122 mm M76

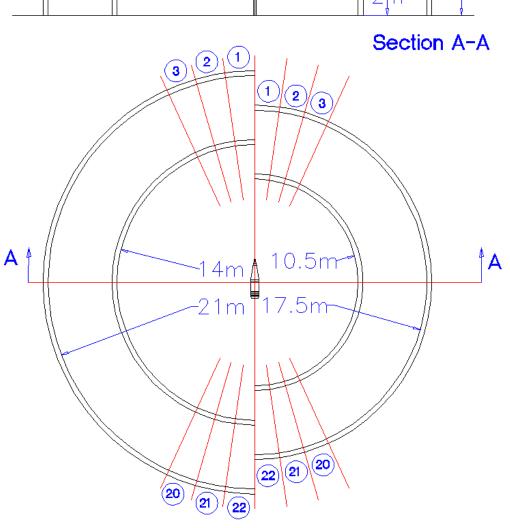


Next diagrams show comparison of the FragPred calculation with results of experiments for the arena radius 10.5, 14.0, 17.5 and 21 m

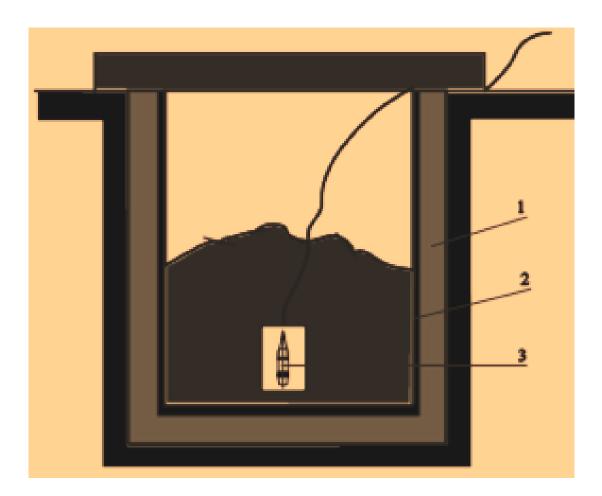

Semicircular Sector on 10.5 m from the Center


Semicircular Sector on 14.0 m from the Center


Semicircular Sector on 17.5 m from the Center


Semicircular Sector on 21.0 m from the Center

Arena set-up


Schematic of French & Serbian standard Arena setup used for testing.

Comparison between calculated and experimentally obtained values of coefficient of efficiency A_E

Height of explosion h = 0 m. The recumbent figure of a	Angle of fall (degree)				
man.	30	45	60		
Predicting A _E [m ²]	268.44	306.66	385.28		
Experimental values of A _E [m ²]	258.78	306.83	395.56		

Sand Pit Instalation

Testing projectile in a sand pit:

- **1** cylindrical
 - concrete pit;
- 2 metal liner;
- 3 projectile

Comparison of Results of Fragmentation - Sand Pit Test -

Results at a distance R = 100 cal. (12.2 m)

Characteristics	From FragPred	From Sand Pit	
Mass of efficient fragment (E _k = 100 J)	0.3127	0.3113	
Number of projectile fragments N _{ef} (-)	5746	6645	

The difference in the number of N_{ef} results from the 6.7% lost fragments in the pit. This lost mass is distributed across all mass groups. But these are by nature very small (inefficient fragments) and can be omitted from the calculation.